27. Tang B., Chen Y., Wang Y., Nie J. A Wavelet-Based Learning Model Enhances Molecular Prognosis in Pancreatic Adenocarcinoma. BioMed Research International, 2021:7865856.
26. Tang B., Wang Y., Chen Y., Li M., Tao Y. A Novel Early-Stage Lung Adenocarcinoma Prognostic Model Based on Feature Selection With Orthogonal Regression. Frontiers in Cell and Developmental Biology, 2021(8), ArticleID: 620746. (SCI:000609417100001)
25. Jin V., Wang J., Tang B., eds. (2020). Integration of Multisource Heterogenous Omics Information in Cancer. Book Press: Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88963-448-4.
24. Tang B., Pan Z., Kang Y. and Khateeb A. Recent Advances of Deep Learning in Bioinformatics and Computational Biology. Frontiers in Genetics, 2019(10), ArticleID: 214. (SCI:000462600500001)
23. Tang B. Inference of crosstalk effects between DNA methylation and lncRNA regulation in NSCLC. BioMed Research International, 2018(2018), ArticleID: 7602794. (SCI:000436191800001)
22. Tang B, et al. Advances in genomic profiling and analysis of 3D chromatin structure and interaction. MDPI Genes, 2017, 8(9), 223. (SCI:000412086900014)
21. Tang B, et al. Integration of DNA methylation and gene transcription across nineteen cell types reveals cell type-specific and genomic region-dependent regulatory patterns. NPG Scientific Reports, 2017:7, ArticleID:3626. (SCI:000403314500074)
20. Tang B, et al. COPAR: a ChIP-seq Optimal Peak AnalyzeR. BioMed Research International, 2017(2017), ArticleID: 5346793. (SCI:000398684700001)
19. Tang B. Toward optimization-oriented NGS peak alignment within the context of Precision Medicine Initiative. IEEE Int. Conf. Bioinform. Biomed., 2016:1848-1850, ArticleNumber:7822799. (EI:20170803377545)
18. Tang B. META2: Intercellular DNA methylation pairwise annotation and integrative analysis. BioMed Research International, 2016(2016), ArticleID: 1597489. (SCI:000391987100001)
17. Tang B, et al. Power spectrum-based genomic feature extraction from high-throughput ChIP-seq sequences. Intelligent Computing Theories and Application, Springer LNCS 2016:439-447. (EI:20163002641471)
16. Tang B. Genomic feature extraction and comparison based on global alignment of ChIP-sequencing data. Bioengineered, 2016 Sep 30:1-8. (SCI:000402878800016)
15. Tang B. DMAK: A curated pan-cancer DNA methylation annotation knowledgebase. Bioengineered, 2016, 8(2):182-190. (SCI:000399530000015)
14. Tang B, et al. Cross-cell DNA methylation annotation and analysis for pancancer study. Bang. J. Pharmac., 2016. (SCI:000378855100008)
13. Tang B, et al. Inferring the interplay landscape between DNA methylation and transcription regulatory activities. P. J. of Pharmaceu. Sci., 2015. (SCI:000350521500011)
12. Tang B, et al. Inference of gene regulatory networks in human cancer. In Statistical Diagnostics for Cancer - Analyzing High-Dimensional Data. Wiley-Blackwell Press, 2013; (Book chapter)
11. Tang B, et al. Cancer omics: From regulatory networks to clinical outcomes. Elsevier Cancer Letters, 2013. (SCI:000327293400018)
10. Tang B, et al. Hierarchical modularity in ERα transcriptional network is associated with distinct functions and implicates clinical outcomes. NPG Scientific Reports, 2012. (SCI:000311349800002)
9. Kennedy BA, Deatherage DE, Gu F, Tang B, Chan MWY, Nephew KP, Huang THM, Jin VX. ChIP-seq defined genome-wide map of TGFß/SMAD4 targets: implications with clinical outcome of ovarian cancer. PLOS ONE 6: e22606, 2011. (SCI:000293172900056)
8. Tang B, et al. Integrative identification of core genetic regulatory modules via a structural model-based clustering method. I.J. Computational Biology and Drug Design, 2011. (PubMed ID:21712564)
7. Tang B, et al. Toward comprehensive feature extraction from high-throughput NGS sequences. IEEE Procs of Computational Biology & Bioinformatics, 2011.
6. Tang B, et al. A weighted structural model clustering approach for identifying and analyzing core genetic regulatory modules. IEEE Procs of Bioinformatics & Biomedicine, 2010. (EI:20110913708841)
5. Tang B, et al., Computational inference and analysis of genetic regulatory networks via a supervised combinatorial-optimization pattern. BMC Systems Biology, 2010. (SCI:000208294800002)
4. Tang B, et al., An information and combinatorial theories-based framework for integrative inference and analysis of genetic regulatory networks. Lecture Notes in Operation Research, LNOR 11, 2009. (Book chapter) (SCI:000281131900050)
3. Tang B, et al., Model-based identification & adaptive control of the core module in a typical cell cycle pathway via network & system control theories. Advances in Complex Systems, 2009. (SCI:000264302200003)
2. Tang B, et al., In silico identification & adaptive control of the motif in the mammalian G1/S cell cycle pathway. IEEE Procs of iCBBE, 2008. (EI:20083711531331)
1. Tang B, et al., System stability via stepping optimal control algorithm: theory & applications. Lecture Notes in Computer Science, LNAI 4874, 2007. (Book chapter) (EI:20080411056817)
More8. 2019-2021: Municipal Key Science & Technology Program (No. CE20195023);
7. 2019-2021: Fundamental Research Funds for China Central Universities (No. 2019B22414); 6. 2016-2019: Natural Science Foundation of Jiangsu, China (No. BE2016655); 5. 2016-2019: Natural Science Foundation of Jiangsu, China (No. BK20161196); 4. 2016-2018: Fundamental Research Funds for China Central Universities (No. 2016B08914); 3. 2016-2018: Municipal Key Science & Technology Program (No. CE20155050); 2. 2016-2016: NSFC-Guangdong Mutual Funds for Super Computing Program (2nd Phase); 1. Consortium Project: Open Cloud Consortium sponsored project resource, which supported in part by grants from Gordon and Betty Moore Foundation and the National Science Foundation (USA) and major contributions from OCC members. More